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A model is described for large axisymmetric deformations of a linearly elastic spherical 
shell compressed between two rigid plates. The deformation of the free region may be deter- 
mined from a two-point boundary value problem, but the presence of a boundary layer makes 
the solution difficult by standard techniques. Solutions found by a multiple shooting method 
with some special features are presented here for a number of cases. Numerical evidence 
suggests that the onset of buckling in the contact region is controlled by a single nondimen- 
sional parameter. 

1. INTRODUCTION 

We describe a model for the compressive loading of a thin shell, subject to surface 
constraints which cause the formation of boundary layers. The mathematical model is 
based on a non-linear shell theory which admits large deflections and rotations and 
gives rise to a two-point boundary value problem. Standard numerical techniques, 
including simple shooting and simple finite difference procedures, were found to be 
unsatisfactory for obtaining solutions, due to the boundary layer formation. A 
modiIied multiple shooting method is introduced which combines the advantages of 
the other techniques and leads to accurate results. Numerical solutions are presented 
for a number of shell configurations and their implications for the buckling analysis 
are discussed. 

In Sections 2 and 3 the physical problem and the mathematical model are 
described. The model derives from the analysis of Updike and Kalnins [lo] and uses 
the non-linear shell theory of Reissner [9]. An approximate linear model is also 
described and the behaviour of the solutions in the boundary layer region is 
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discussed. A special scaling of the equations is chosen to make numerical solution of 
the equations easier. 

In Section 4 the numerical procedure for finding the solutions is presented. The 
method is based on the multiple shooting technique for two-point boundary value 
problems introduced by Osborne [7], and appears to be similar to the methods 
described by Kalnins [3] and Kalnins and Lestingi [4] and Wan [ 131 for solving 
these problems. A procedure of this type has also been suggested by Keller [5]. 
Novel features of the method described here include the automatic choice of shooting 
intervals and the algorithm for solving the resulting system of non-linear algebraic 
equations. With an appropriate formulation of the problem, a continuation method 
can also be implemented by the procedure to find solutions of the problem for a 
sequence of parameter values. 

In Section 5 numerical results are presented, showing the load versus deflection 
behaviour of the shell, the critical points for buckling, the stress behaviour, and the 
yielding versus buckling points. Conclusions are given in Section 6. The results 
suggest that the bifurcation point at which buckling occurs depends upon a single 
parameter determined by the dimensions and material constants of the thin shell. The 
hypothesis of Updike and Kalnins [lo] concerning the yielding versus buckling is 
also confirmed by the results. 

2. PHYSICAL PROBLEM 

We consider a hollow spherical shell of isotropic material compressed between two 
rigid flat plates. We assume that the shell is thin, i.e., has a radius to thickness ratio 
240, and that the interfacial surfaces of the shell and plates slide freely. We assume 
further that loading is axisymmetric and that symmetry is maintained during loading, 
so that all displacements and stresses are independent of circumferential angle. 
Symmetry about the equatorial plane is also assumed. 

We use the following notation: a, radius of the undeformed shell; t, thickness of the 
shell; E, Young’s modulus of elasticity; u, Poisson’s ratio; 4, angle between axis of 
symmetry and normal of the undeformed shell; &,, value of 4 corresponding to points 
at the edge of the contact region in the deformed shell; pO, radius of the contact 
region; 6, displacement of the flat plates at equilibrium; and P, total applied pressure. 

la1 undeformed Ibl deformed 

FIG. 1. (a) Undeformed, (b) deformed. 
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The problem is to find the equilibrium state of the shell under a given load. In the 
initial undeformed state (Fig. la) the load is concentrated at the poles. As defor- 
mation occurs, the shape of the shell is constrained by the flat plates, so that part of 
the shell is in contact with the plate and part of the surface remains free (Fig. lb). 
The load is distributed over the area of contact between the shell and the plates, the 
total pressure P remaining constant. The curvature of the deformed shell is smooth 
and reasonably small except in the area near the edge of the contact region. Here the 
angle of the normal changes rapidly in order for the shell to satisfy the surface 
constraints. The bending moment becomes significant and the formation of a 
boundary layer is indicated. 

As the load P increases, a bifurcation point is reached where an adjacent 
equilibrium state exists and the contact region may buckle inward. We assume, with 
some experimental justification, that the form of the first buckling mode is axisym- 
metric (Fig. lb). When the load P is sufficiently large, the induced stresses in the 
shell may exceed the yield point and the material may become partially plastic. 

For various shell configurations we wish to determine the following: 

(1) load vs deflection behaviour-in particular, the relation between P and 6, 
the deflection of the flat plates at equilibrium, or equivalently the relation between P 
and pO, the radius of the contact region; 

(2) buckling load; 
(3) maximum stresses; 
(4) yielding load vs buckling load. 

3. MATHEMATICAL MODEL 

3.1 Large Deflections and Strains-The Nonlinear Model 

The formulation of the problem is based on the analysis of Updike and Kalnins 
[IO]. The equilibrium equations and stress-strain and straindisplacement relations 
are developed from Reissner’s nonlinear shell theory [9]. Large deflections and 
rotations and large strains are admitted, but the stress-strain relationship remains 
linear and elastic. Bending clearly cannot be neglected, but the determination of (1) 
to (4) of Section 2 is essentially insensitive to shear deformation, and we may neglect 
transverse shear strain. 

The stresses, strains, and displacements at a point on the midsurface of the 
deformed shell are defined in terms of the meridional angle 4 of the original position 
of the point on the undeformed shell. If $,, is the value of 4 corresponding to points 
on the edge of the contact region, then we can compute the stresses and deflections in 
the deformed shell, and also the load P, the displacement 6, and the radius p,, of the 
contact region parametrically in terms of &. We use the following notation (see 
Fig. 2): u, w, horizontal and axial displacements; /7, rotation of the normal; E,, se, 
meridianal and circumferential extensional strains; k,, k,, bending strains; N,, N,, 
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I 
UNDEFORMED 

DEFORMED 

FIGURE 2. 

membrane stress resultants; M,, M,, stress couples (or bending moments); H, V, 
horizontal and vertical stress resultants; pH, pv, loads per unit area in the horizontal 
and vertical directions. 

The governing equations are then 

(a) Strain-displacement: 

w=6-P 
&@(a sin v/) = dw/d$ - a(sin y - sin 4) 

&@(a cos w) = du/d# - a(cos w - cos 0) 

Em = u/(a sin 4) 

k, = (l/a) W4 

k, = (sin 4 - sin u/)/(a sin 4). 

(b) Stress-strain: 

N, = K(E@ + U&&J, K=Et/(l -f?), 

N, = K(E, + mm), 

M, = D(k, + ok,), D = Et3/12(1 - o*), 

M, = D(k, + ok,). 

(c) Equilibrium: 

(3.la) 

(3.lb) 

dV/d# = -r, V/p - vpv 

dH/d# = -r, H/p + vN,lp - vp, 

dM,/d# = -r,(M, - M,)/p - v(H sin w - V cos t,v), (3. lc) 
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where 
p=asin#+u 

v = a(1 + Ed) 

r, = vcos yip’ 

N,=Hcos~+Vsin~. 

In the free region, #,, ( # < n/2, the shell equations can be reduced to six ordinary 
differential equations for U, w, /3, H, V, and M6. We normalize the variables to obtain 
nu+dimensional quantities as 

ti = u/a, 1.9 = w/a, B = (t/a) P 

fi = H/Et, c;= V/Et, fib = Mm/Et’. 

This is not the standard normalization but it leads to better results for the numerical 
method, as we discuss later. The normalized equations are then given by 

w=+W)B 

em = (1 - o’)(A cos v + B sin I+Y) - &/sin $ 

d$/d4 = (1 + .sm) sin w - sin 0 

dti/d$ = (li El) cos w - cos 4 

dj?/dqi = 12( 1 - 02) i@, - a(t/a)(sin # - sin w)/sin 4 

dZ$/d# = {(l + s,)/(sin Q + z?)} {-(1 -a) &cos w + apsin w + G/sin $1 

df/d# = ((1 + e,)/(sin 4 + 6)) {-Pcos w} 

dh?,/d#= ((1 +e,)/(sin#+u^)} {-(1 -a)fi,+(t/l2a)(sind 

- sin v)/sin $} cos w - (1 + eJ(a/t)(Ei sin w - Pcos w). (3.2) 

In the contact region, 0 ( 4 Q #0, the neglect of shear strain predicts that the 
pressure distribution over the contact region is zero and all the force is distributed 
along the edge of the contact region as a line load of magnitude Q* = P/27rpp, (see 
Fig. lb). Since we are not interested in the exact pressure distribution over the 
contact region, but only in the relation between the total pressure P and the radius p,, 
of the contact region, this model is sufficient. Then Eqs. (3.la)-(3.1~) can be solved 
explicitly in the contact region to give 

ti, = S/a - (1 - cos 4) 

B = (t/a) 4 
P30 

A, = t/(12a(l -a)) 

A =f(u^), (3.3) 
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where f is a known function of u^ and its derivative, and u^ satisfies the nonlinear 
second-order differential equation 

p(P - sin 4 + &‘/sin 4 - or? cos #/sin* 0) 

+ (1 - a) r,(zZ - 2 sin*($/2) - i/sin 0) = 0, O<$<hl, 

u^ = 0, $4 = 0. (3.4) 

If we assume that the contact region is shallow so that small angle approximations 
are valid, i.e., 4 < 15’, and so that the circumferential strain is small, i.e., 1 + E, z 1 
in that region, then we can linearize Eq. (3.4) and solve explicitly for u” in terms of an 
arbitrary parameter. The relation between Z? and u^ becomes simply 

fi =f(u^) E ii/(( 1 - 0) 4) - #*/(8( 1 - u)). (3.5) 

Equations (3.3~(3.5) only define the solution in the contact region up to an 
unknown constant. If, however, we assume continuity of the variables u^, B, fi, fi$ 
between the contact region and the free region, then together with symmetry 
conditions at 4 = 7r/2, these relations give us sufficient boundary conditions to solve 
differential equations (3.2) in the free region. From these results we can determine the 
solution in the contact region uniquely. To solve the complete problem, then, we must 
solve differential equations (3.2) subject to the boundary conditions 

B = o/a> 40 
A, = t/(12a(1 - (5)) 

fi= C/(1 -a) Q0 -(i/8(1 -a) 

G = 0, B=O, A=0 

at $=q&, 

at $ = n/2. (3.6) 

The vertical stress v is assumed to be discontinuous at 4 = &,, and its limit p,,, as 
0 -+ $0’ in the free region, will equal the negative of the line load Q*. The solution of 
(3.2), (3.6) then gives us the values G = GO, u^=u”,,and P=p0at4=&,fromwhich 
we can compute 6, p,,, and P using 

6 = a(Go + 1 - cos $J 

p. = a(& + sin &J 

P = -2nEt&p,. (3.7) 

We observe that Eqs. (3.2) depend on the small parameter f/a. If we examine the 
behaviour of the system as t/a + 0, that is, as the shell becomes thinner, we find that 
the system reduces to the case where bending is neglected. Eliminating I&* from the 
third and sixth equations of (3.2) we derive the second-order differential equation 
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jP + { (1 - u)( 1 + s,)/(sin $ + u^) + u/sin $} cos v/7’ 

t u(t/a) sin(yl - #)/sin’ 4 - (1 - a)(( 1 t s,)/(sin d t f.?)) 

X (t/a)(sin d - sin w) cos W/sin d 

=-12(1 -o’)(a/t)(l + s,)(Asin w- Pcos w). 

Multiplying by t/a and formally setting t/u = 0, we obtain (for $ bounded away from 
zero) 

&sin w= Pcos w. 

Substituting for v in the remaining equations we eliminate the effect of both j?, the 
rotation of the normal, and I@,, the bending moment, and thus obtain a reduced 
system of order four. Evidently system (3.2) is a singular perturbation problem, and 
for small t/u we expect boundary layers or turning points to appear in the solution. In 
the physical problem the large rotations and large bending moments which occur near 
the edge of the contact region are responsible for the formation of boundary layers, 
and since the same effects occur in the solutions of the differential equations, we may 
reasonably assume that the mathematical model will represent the boundary layer 
behaviour as required. 

We also observe that d = 0 is a singular point of Eqs. (3.2), and that for small 
values of #,, the solutions will exhibit nearly singular behaviour close to 4,. This 
behaviour must be taken into consideration by the numerical computation procedure. 

Both the boundary layer and singularity phenomena are examined in more detail in 
the next section with the use of an approximate linear model. 

3.2 Small Deflections and Strains-A Linear Model 

If we assume displacements and strains are small everywhere in the shell, then the 
limiting case of the governing equations (3.1) gives us a set of six linear ordinary 
differential equations to solve in place of (3.2). For small & we expect the solution of 
the linear equations to give us a rough approximation to the solution of the nonlinear 
equations. This will be useful in finding the numerical solution of the problem. The 
linear formulation also enables us to examine the analytical behaviour of the 
solutions and to test the results of the numerical procedure. 

We assume that d,, is small, that the membrane strains em, e0 are small with respect 
to unity, and that the displacements are small. In the free region, do ( 4 < n/2, Eqs. 
(3.2) become 

dti/d# = (1 - a’)@ cos 0 t P sin 4) sin 4 - ou^ - (u/t) p cos 4 

dz?/d# = (1 - a’)@ cos d t P sin 4) cos d - uu^ cot d + (u/t) fi sin d 

d&d#= 12(1 -u’)&+$cot# 

dfi/d# = -( 1 - u) I? cot d + G/sin’ ) + UP 

d v/d4 = - c’ cot 4 

dfi,/d# = -(l - u) A?& cot 4 + /? cot’ $/12 - (u/t)((fi sin d - Pcos 0. (3.8) 
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The boundary conditions are still given by (3.6). We observe that near tiO the 
assumptions are not strictly valid since /I is not small with respect to 4. In absolute 
terms, however, both 4 and /I are small near &,, and therefore (3.8) gives a 
sufftciently accurate approximation to (3.2) over the free region for our purposes. 

We may write Eqs. (3.8) in vector notation as 

where 
Y’ = K(d) Y9 (3.9) 

and 

[ 

0 -u -(a/t) cos 4 (1 - a’) sin # cos 4 (1 - u2) sin* $ 0 
0 -u cot ( (a/t) sin 4 (1 -u2)cos2# (1 -a’)sin(cos# 0 

K(4)= ; $2 d -";t" 
0 0 12(1 - 02) 

-(I -u)cot~ u 0 
0 0 0 0 -cot ) 
0 0 cot* $112 -(a/t) sin # (44 ~0s 4 -(l -oo)cot# 

We note that the equation for ti, could be solved independently from the rest of the 
system. For numerical calculations, however, it seems more efficient to compute all 
the solutions simultaneously. (The same remark holds for the nonlinear model.) 

The accuracy and efficiency of any numerical method for solving (3.9) depends on 
the conditioning of matrix K($) and on the range of magnitude of the nonzero coef- 
ticients. We wish to restrict the range to as small an interval as possible. For the 
choice of normalization, the range of magnitude is @( 1) - @(a/t). We remark that 
without normalizing the variable j3, the range of the coefftcients would be 
@(t/a) -@(a/t). If none of the variables is normalized, the solutions will not be 
dimensionless and the equivalent Eq. (3.9) would have a matrix with coefficients in 
the range 8(t3/a) - B(a/t3). The more common normalization, in which B = p and 
A?, = M,/Etu, leads to a matrix with coefficients in the range @((t/a)*) - @((a/t)*). 
The given choice of normalizing factors thus seems to lead to the best scaling of the 
matrix while giving dimensionless quantities. 

To examine the behaviour of the solution in the region near &,, we make the 
assumption that angle $ is small, and consider the solution of Eq. (3.9) with K(4) 
approximated by 

0 -a/t 0 0 0 
0 --;I$ 0 1 -u* 0 0 
0 0 -u/d 0 12(1 -a’) 
0 l/$42 0 -41” UYb 

0 0 0 0 -h 

0 

0 0 l/1292 0 aIt 41” uY# I 
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Solving the fifth equation gives P = v,, #,,I& and combining the second equation with 
the fourth, and third with the sixth gives 

and 

where 

c,, = 12( 1 - a2)(a/t) f,,#, A -6P/lrEt2 

c, = a( 1 - a2) &q& i -uP/2nEtu. 

It is evident that the solutions to these equations are singular at d = 0 and therefore 
that, for small #,,, the behaviour of the solutions in the region 0 < d,, Q # < $r is 
nearly singular as 4 --t #,‘. This behaviour becomes less severe as #0 increases. The 
coefficients cO, c, of the forcing functions, however, also increase with the total 
applied pressure P, and therefore, as 4, increases, the magnitudes of the solutions in 
the interior become larger. 

For small $0 and # + (,‘, the solutions behave approximately as 

where K, = (1 + a)&/16 + SC,&,, K, = f~~#~, K, = #i/16 + c,/4(1 + u), K, = 
c,,/48( 1 + a), KS A - f((u/t) c0 + uci) &, and j$,, fi,,, fiO are, respectively, the values 
of j?, fi, and M at 4 = & given by (3.6). We observe that, as d + #,‘, fi and 8, are 
the most badly behaved of the solution components, while $ is essentially smoother 
than the rest. 

We remark that if we formally set t/u = 0, the effect of both fi and A, is 
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eliminated from the equations, and a lower order “reduced” system is obtained 
(approximately equivalent to the system derived when bending is neglected). In 
general, the well posedness of the boundary value problem depends on the well 
posedness of the reduced system, provided the correct scaling of the equations has 
been chosen. A complete analysis of linear problem (3.8), (3.6) is possible using the 
theory developed by Kreiss and Nichols [6], but will not be discussed further in this 
paper. 

3.3 Analysis of Buckling 

To determine the minimum buckling load we assume that in the flat contact region 
an additional axisymmetric rotation v is superimposed on the normal rotation which 
is already required to satisfy the constraint imposed by the plate. The rotation of the 
buckled state is then 

P=4+v. (3.10) 

Assuming again that the contact region is shallow, so that small angle approx- 
imations are valid, Eqs. (3.la-c) together with (3.10) can be solved explicitly as 
before. Ignoring second-order terms in ?,J, the solution for the buckled state in region 
0 < 4 < & satisfies the original equations plus the additional second-order differential 
equation 

(3.11) 

and boundary conditions 

VP) = 0, r1(9cJ = 0. (3.12) 

Here 

k4 =. 12( 1 - a’) a2/t2, (3.13) 

and 1 is determined by the solution in the free region as a function of &,. (See Updike 
and Kalnins [lo] for details.) 

If 1 is taken as unknown, eigenvalue problem (3.11), (3.12) can be solved to find 
A2 as a function of k#,. The resulting curve is called the “buckling curve,” and is 
shown in Fig. 4. (Values for the corresponding function are given in Updike and 
Kalnins [IO].) Similarly, the curve (J2, k#,,) can be computed directly from the 
solution in the free region, where A2 is given by 

or equivalently by 

A* = -k2 [A(#,) - $;/16] (3.14a) 

A2 = -(12(1 + a) a’/t’)[u”(q&) - (3 -6) &/16]/k*#,. (3.14b) 
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The bifurcation point at which buckling occurs is just the point of intersection of the 
two curves. To determine the critical points we solve boundary value problem (3.2), 
(3.6) numerically for a sequence of values of &,, compute the corresponding points 
on the curve (L2, k#,) from (3.14a), and use inverse interpolation to determine the 
point at which this curve crosses the “buckling curve.” The numerical procedure for 
solving the boundary value problem is described in the next section and numerical 
results are given in Section 5. 

4. NUMERICAL METHOD 

4.1 Canonical Form of the Model 

The mathematical problem represented by the system of six differential equations 
(3.2) and boundary conditions (3.6) constitutes a two-point boundary value problem 
where the solution is required for various values of &,. The parameter &, enters into 
the problem both as a boundary point, and in the boundary values at that point. To 
simplify the dependence upon &, it is convenient to transform the free region to a 
fixed interval [0, 1 ] in a new variable x, such that 

4=(7r/2-p)x+p. (4.1) 

In terms of the new independent variable x, the values of the derivatives in (3.2) are 
all multiplied by d4/dx = 7c/2 -,u, while boundary conditions (3.6) are applied at 
x = 0 or x = 1 as appropriate. 

The problem is then in a standard form 

dyldx = W, Y(X), P) (4.2) 

with boundary conditions 

B(Y&% Y(I), pi) = 0, (4.3) 

where in this case the vector p has a single element p = [,u], and the vector function B 
is defined by 

BE 

S(O) - (t/a) P 
g@(O) - t/( 12a( 1 - a)) 
H(0) - u^(O)/( 1 - a) ,u + ,u2/8( 1 - u) 
m 
m> 
W) 
P - h 

(4.4) 

Here the last element is added to ensure that x = 0 corresponds to 0 = 4, while 
allowing $,, to be varied easily. The method of continuation can then be used to solve 
the equations for a sequence of values of &,. 
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4.2 The Multiple-Shooting Method 

The numerical solution of problem (4.2)-(4.1) is found by a “multiple-shooting” 
method using a general code described in detail by England [ 11. The domain [0, 1 ] is 
divided into subintervals, and an initial value problem with differential equation (4.2) 
is solved over each subinterval. The correct initial values at each “shooting” point are 
chosen to satisfy continuity requirements at the “matching” points at the ends of each 
interval, together with boundary conditions (4.3). 

To, describe the procedure mathematically let the vector function Y(x, z, W, p) 
satisfy the system of differential equations 

dY/dx = G(x, Y, p) (4.5) 

with initial conditions 

Y(z, z, w, p) = w. (4.6) 

The Jacobian matrices J,(x, z) = BY/aW and J,(x, z) = aY/& then satisfy the 
variational equations 

(4.7) 

with initial conditions 

J,(z, z> = 6 JJZ, z) = 0, (4.8) 

where I, 0 are identity and zero matrices of appropriate orders. 
Given q/2 + 1 shooting points zi (i = 0, 2,..., q + l), and q/2 matching points xi 

(i = 1,3 ,..., q), such that zip I <xi < zi+ r and zi-, < zi+ r (i = 1, 3 ,..., q), where z,, = 0, 
Z 9+1 = 1, the original boundary value problem (4.2), (4.3) reduces to a system of 
non-linear algebraic equations for y(z,), i = 0, 2,..., q + 1, and p: 

y(Xi, zi- 13 y(zi-l)v p) - y(xi? zi+ 19 Y(zi+ I>> P) = O? 

B(Y(z,), Y(z,+ A CI) = 0, 

i = 1, 3 ,..., q, 

(4.9) 

where the values of function Y are determined by solving initial value problems of 
form (4.5), (4.6). The solution of nonlinear equations (4.9) is found using the 
Jacobian matrix of the system, which in this case is just the structured block matrix 

I 
J 10 -J,, Kl 

J JH 32 K3 
----__--- --------------- 

J 4.4- 1 -Jw7+1 6 
Way (0) WW 1) W& 1. (4.10) 
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Here Ji, = J&xi, z”,), i = 1, 3 ,..., q; m = i f 1, and Ki = J,(xi, ziPI) - Jw(xi, zi+ 1), 
i = 1, 3,..., q, and both may be evaluated by solving initial value problems of the form 
(4.7), (4.8). 

The multiple-shooting method thus consists of three principal parts: (i) selection of 
shooting and matching points; (ii) solution of initial value problems; (iii) solution of 
systems of nonlinear algebraic equations. The techniques used to implement each 
phase are described in the next section. 

General advantages of the multiple-shooting method are mentioned in England [ 11. 
We note that with only one “shooting” interval, the multiple-shooting technique 
reduces to ordinary shooting, whereas if only one step is used in the integration 
across each subinterval, the method reduces to a simple finite-difference method. For 
our problem, rapid growth of the fundamental solutions is associated with the 
formation of the boundary layer, and it does not seem possible to obtain a solution 
with less than two shooting points, thus exlcuding the ordinary shooting method. On 
the other hand, with the simple finite-difference procedure, a considerably larger 
number of nonlinear equations would need to be solved for similar accuracy and 
much more computer storage would be required. 

4.3 Special Features of the Multiple Shooting Method Used 

The multiple-shooting program used provides a facility for automatic selection of 
the shooting and matching points, in a manner which is intended both to avoid any 
possible ill-conditioning of the matrices Ji, which might result from the wide span of 
the eigenvalues of matrix K(d) in Eq. (3.9), and to limit the growth of integration 
errors within each shooting interval. The points are chosen sequentially until a final 
matching point x, is found, and satisfy the following criteria along the initially 
estimated solution: 

II J&Xi, Zmh JN(Xiy ZmIIm Y Cy i = 1, 3,..., q; m=i-I (i < s), 

m=i+ 1 (ias), (4.11) 

z,=xi, i = 1, 3,..., q (i # s); m=i+l (i(s) 

m = i - 1 (i > s). (4.12) 

Shooting is from left to right for x < xS, and from right to left for x > x,. First, given 
z0 = 0, Eqs. (4.5) and (4.7) are integrated forward until the first point of the 
discretization where the norm in (4.11) exceeds the constant C, which has normally 
been taken as 10. This point is taken as x, and z2. The point x, = zq- 1 is found in a 
similar way by integrating backwards from zo+ i = 1. Integration then proceeds in the 
direction of the larger of the last two shooting intervals, the comparison being 
repeated after each matching point has been found, until the integrations from the two 
ends meet in x,. This is a somewhat ad hoc procedure, inspired by Osborne [7], and 
can be sensitive to the initial estimate of the solution, as it is not convenient to 
modify the shooting and matching points at a later stage. Although values of C larger 
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than 10 may be advantageous, the procedure has generated satisfactory shooting 
intervals for our problem with the selected parameter values. 

The method for solving initial value problems used in the program is based on a 
fourth-order Runge-Kutta method given by England [2] with step adjustment deter- 
mined by a fifth-order local error estimate for Eq. (4.5) only (but not (4.7)). 

To solve the nonlinear algebraic equations (4.9), the program uses a version of the 
Marquardt algorithm implemented by Reid [8] to minimize the sum of squares of the 
residuals. A Newton method could have been used, but the convergence of the 
procedure is then strongly dependent upon the initial estimate of the solution. The 
Marquardt-type algorithm tends to improve the global convergence properties while 
having the same convergence rate as the Newton method in the neighbourhood of the 
solution. 

4.4 Use of the Multiple Shooting Method 

For given values of the geometric and elastic parameters t/a, u, solutions of the 
boundary value problem are required for various values of #0, increasing from 0, at 
least as far as the buckling point. For small values of &,, a good estimate of the 
solution is available from the linear model, and convergence to the solution of (4.9) 
is in any case easy and fast even from a poor estimate. For larger values of &, 
however, convergence becomes slower, and it is correspondingly morL difficult to 
provide a good initial estimate. Nevertheless, for large &, solutions have been 
obtained using only crude initial estimates, as a result of the global convergence 
properties of the Marquardt algorithm. 

It is natural, however, and quicker to use a continuation process in the parameter 
&, , Since results are required for various values of $,, , the solution for one value may 
be used as the initial estimate for the next. If values of &, are taken in increasing 
order, and close to one another, the initial estimates are in each case good, and rapid 
convergence to the solution of (4.9) is observed. As the equations are non-linear, 
there is also a possibility of multiple solutions. The process of continuation in 4, 
corresponds to the physical application of the load, and ensures convergence to the 
correct solution. 

5. NUMERICAL RESULTS 

Complete solutions to the thin-shell problem were obtained for a variety of 
physical parameters. The behaviour of the displacements and stresses was determined 
for values of t/a ranging from l/40 to l/160 and for cr= 0.2, 0.33, and 0.45. For 
each case, solutions were found for values of o0 ranging from o,, = 0.0436 to 
#0 = 0.35 in steps of approximately 0.02. 

In Fig. 3, the load versus the deflection behaviour is shown for u = 0.33 and 
various values of t/u. The bifurcation point at which buckling may occur is indicated, 
and it can be seen that at this point d/t takes the same value, 6/t = 2.3, in all cases, at 
least to a first order of accuracy. 
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TABLE 1 

Thickness/radius 
tla 

l/40 
l/60 
l/80 
l/100 
l/120 
l/160 

Buckling 

0.240 
0.196 
0.170 
0.152 
0.139 
0.120 

4, crit. 

Yielding 

-0.131 
-0.153 

0.164 
-0.175 
-0.199 
-0.199 
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FIG. 5. 4. = 0.1312; ---, NJ3Et; -, N,/3Et; (a) t/a = l/40; (b) t/a = l/100; (c) t/a = l/160. 
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In Fig. 4, the “buckling curve,” as defined in Section 3.3, is shown, and the curves 
(A’, k#,) computed from the solutions of the boundary value problem are plotted for 
u=O.33 and t/a= l/40, l/80, l/100, l/120, l/160. The curves for the various 
values of t/a are virtually indistinguishable. The same curve is found in the cases 
u = 0.2, 0.45. Near the intersection of the plotted curve with the “buckling curve,” 
solutions were obtained for values of $,, at steps of about 0.003. In all cases the bifur- 
cation point determined from the intersection of the curves is given to two decimal 
accuracy by 

kQ,, = 2.15, (5.1) 

where k = (12(1 - a2) u2/t2)“4. Hence the critical point for the buckling can be 
determined directly as a function of the ratio of the thickness to the radius of the shell 

10‘3x3 

2 

1 

t 

FIG. 6. (,=0.1312; - M,/Et2; -, Me/Et=; (a) t/a = l/40; (b) t/a = l/100; (c) tja = l/160. 
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and Poisson’s ratio of the material of the shell (at least for the given range of r/a). It 
appears also that the displacements at &, are similarly dependent on the parameter k, 
and hence the value of d/t for which buckling occurs can also be determined from k. 
These results do not appear to be described in the literature and no analytic proof has 
been found to confirm the results for all thin shells. In the case of the bending beam 
problem and the problem of the flat plate under compression, however, the buckling 
point can be shown to depend on a simple parameter determined from the dimensions 
and material constants of the elastic body. That such a result holds also for the thin 
shell does not, therefore, seem unlikely. In Table I the critical values of 4, at which 
buckling occurs for various t/a with CJ = 0.33 are shown. 

In Figs. 5-8 the distributions of the stresses and stress couples in the shell are 
shown for various values of #,, and t/a with c = 0.33. We observe that for small q$, 

FIG. 7. l/a= l/100; - - -  Nd3Et: 
t  “ ,  

-, NJ3Et: (a) d, = 
VI . \ I / ”  

0.0436: Cb1 d, = 
\  I  I ”  

0.13 12: Cc) IA = 
\  I , ”  

0.22 19. 



MULTIPLE SHOOTING FOR ELASTIC BOUNDARY LAYER PROBLEM 387 

10-3.X 3 

2 

I 

- 

-1 

-2 

-3 

FIG. 8. t/a = l/100; ---, M,/Et2; -, Ma/Et’; (a) q&=0.0436; (b) $,=0.1312; (c) (,=0.2219. 

the solutions increase or decrease rapidly away from the edge of the contact region. 
This phenomenon is due to the nearly singular behaviour of the variable for #,, N 0 
and is independent of t/a. The solutions also have large variations over a short 
interval in the interior adjacent to #O. This behaviour arises from the formation of the 
boundary layer and is worse for small f/a. We see that as f/a decreases, the width of 
the boundary layer decreases and the large oscillations in the solutions are pushed 
closer to 4,. The magnitudes of the stresses decrease also with f/a and with &,, 
however, due to the decreased loading force P required as the shell becomes thinner, 
or as the compression of the shell is reduced. These results are all predicted by the 
analysis of the small-angle linear approximation in Section 3.2. 

In all the solutions obtained, the maximum stress is caused by the meridional 



388 NICHOLS AND ENGLAND 

bending moment and occurs in the boundary layer just outside the contact region. In 
most materials, yielding will occur for stresses above E/100, i.e., for 

6 max{M,}/Et* = 6 max{QO} > l/100. (5.2) 

Table I gives the minimum values of #,, for which the yielding condition (5.2) is 
satisfied for various t/a with o = 0.33. The numerical results shown in the table 
confirm the hypothesis of Updike and Kalnins [lo], that for large a/t (thin shells), 
buckling will occur before yielding, and for thicker shells the opposite will occur. 
Here we find that for a/t < 80 yielding occurs before buckling is expected, and for 
a/t > 80 buckling may be expected before yielding. In the cases o = 0.2 and 0.45 the 
same result is obtained. 

6. CONCLUSIONS 

The mathematical model described here for the compression of a thin shell between 
flat plates is necessarily idealized, and a number of additional, simplifying 
assumptions have been made in order to obtain solutions to the problem. In 
particular, for the analysis of buckling, a linear approximation is taken and small- 
angle behaviour is assumed. The description of the buckling does not take into 
account any rolling or sliding of the shell surface under the plate, and friction is 
ignored. The pressure distribution over the plate is not considered either. More 
sophisticated models, incorporating some of these features have been derived by 
Updike and Kalnins [ 11, 121. 

Despite the limitations of the idealized model, useful insights and conclusions can 
be drawn from the results. The boundary layer and singular behaviour of the 
solutions near the edge of the contact region with the plates is of special interest, 
since the membrane and rotational stresses reach maximum here. Mathematical 
properties of the problem related to this behaviour also cause difficulties in finding 
numerical solutions. We have examined the analytic behaviour of the solutions near 
the contact edge using small-angle approximations and have shown the singular 
natulre of the solutions for small compression and the greater variation in the solution 
which occurs as the shell becomes thinner (i.e., as t/a + 0). 

The numerical difficulties caused by the boundary layer formation were overcome 
by the use of a multiple-shooting method which includes an automatic step choice 
and a non-linear solver with wide global convergence and quadratic local 
convergence. For the geometric parameters used here, the routine was able to find 
accurate solutions with little a priori information about the solutions. The method 
was adapted for continuation with respect to the loading of the shell, and a whole 
sequence of problems with increasing load was easily solved in one run. 

The numerical results obtained suggest that in this model problem, the point at 
which buckling occurs is dependent on a single parameter determined by the 
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dimensions and material constants of the shell. These results may only hold for the 
range of parameters examined here. Such results, however, hold generally for other 
model problems, namely, the bending beam and compressed plate problems. An 
analytic proof for the thin-shell problem might arise from a more complete analysis 
of the well posedness of the model equations using singular perturbation theory. This 
approach will be considered in another paper. 
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